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ones, but at the expense of increased computational complexity.

As we already discussed, the discrete Bayes filter assigns to each region
Xp,+ a probability, py, ;. Within each region, the discrete Bayes filter carries no
further information on the belief distribution. Thus, the posterior becomes a
piecewise constant PDF, which assigns a uniform probability to each state x;
within each region xy, 4:
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Here |xy, | is the volume of the region xy ;.

If the state space is truly discrete, the conditional probabilities p(xy,; |
ug,X;—1) and p(z; | xx,.) are well-defined, and the algorithm can be im-
plemented as stated. In continuous state spaces, one is usually given the
densities p(x; | wt, xi—1) and p(z; | x;), which are defined for individual
states (and not for regions in state space). For cases where each region x;, ;
is small and of the same size, these densities are usually approximated by
substituting x;, ;+ by a representative of this region. For example, we might
simply “probe” using the mean state in x, ¢
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One then simply replaces

Tkt = |Xk,t

p(Zt \ Xk,t) ~  p(z \ i’k.,t)
P(Xit | U, Xip—1) = 0 Xl p(Ert | we, Tip—1)

These approximations are the result of the piecewise uniform interpretation
of the discrete Bayes filter stated in (4.2), and a Taylor-approximation analo-
gous to the one used by EKFs.

Mathematical Derivation of the Histogram Approximation

To see that (4.4) is a reasonable approximation, we note that p(z; | xj,) can
be expressed as the following integral:
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p(zt | Xk,t) =




