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ones, but at the expense of increased computational complexity.

As we already discussed, the discrete Bayes filter assigns to each region

xk,t a probability, pk,t. Within each region, the discrete Bayes filter carries no

further information on the belief distribution. Thus, the posterior becomes a

piecewise constant PDF, which assigns a uniform probability to each state xt

within each region xk,t:

p(xt) =
pk,t

|xk,t|
(4.2)

Here |xk,t| is the volume of the region xk,t.

If the state space is truly discrete, the conditional probabilities p(xk,t |

ut,xi,t−1) and p(zt | xk,t) are well-defined, and the algorithm can be im-

plemented as stated. In continuous state spaces, one is usually given the

densities p(xt | ut, xt−1) and p(zt | xt), which are defined for individual

states (and not for regions in state space). For cases where each region xk,t

is small and of the same size, these densities are usually approximated by

substituting xk,t by a representative of this region. For example, we might

simply “probe” using the mean state in xk,t

x̂k,t = |xk,t|
−1

∫
xk,t

xt dxt(4.3)

One then simply replaces

p(zt | xk,t) ≈ p(zt | x̂k,t)(4.4)

p(xk,t | ut,xi,t−1) ≈ η |xk,t| p(x̂k,t | ut, x̂i,t−1)(4.5)

These approximations are the result of the piecewise uniform interpretation

of the discrete Bayes filter stated in (4.2), and a Taylor-approximation analo-

gous to the one used by EKFs.

4.1.3 Mathematical Derivation of the Histogram Approximation

To see that (4.4) is a reasonable approximation, we note that p(zt | xk,t) can

be expressed as the following integral:

p(zt | xk,t) =
p(zt,xk,t)

p(xk,t)
(4.6)

=

∫
xk,t

p(zt, xt) dxt

∫
xk,t

p(xt) dxt


