
514 15 Partially Observable Markov Decision Processes

Throughout this and the next chapters, we will abbreviate a belief by the

symbol b, instead of the more elaborate bel used in previous chapters.

POMDPs compute a value function over belief space:

VT (b) = γ max
u

[

r(b, u) +

∫

VT−1(b
′) p(b′ | u, b) db′

]

(15.2)

with V1(b) = γ maxu Ex[ r (x, u)]. The induced control policy is as follows:

πT (b) = argmax
u

[

r(b, u) +

∫

VT−1(b
′) p(b′ | u, b) db′

]

(15.3)

A belief is a probability distribution; thus, each value in a POMDP is a func-

tion of an entire probability distribution. This is problematic. If the state

space is finite, the belief space is continuous, since it is the space of all distri-

butions over the state space. Thus, there is a continuum of different values;

whereas there was only a finite number of different values in the MDP case.

The situation is even more delicate for continuous state spaces, where the

belief space is an infinitely-dimensional continuum.

An additional complication arises from the computational properties of

the value function calculation. Equations (15.2) and (15.3) integrate over all

beliefs b′. Given the complex nature of the belief space, it is not at all obvious

that the integration can be carried out exactly, or that effective approxima-

tions can be found. It should therefore come at no surprise that calculating

the value function VT is more complicated in belief space than it is in state

space.

Luckily, an exact solution exists for the interesting special case of finite

worlds, in which the state space, the action space, the space of observations,

and the planning horizon are all finite. This solution represents value func-

tions by piecewise linear functions over the belief space. As we shall see, thePIECEWISE LINEAR

FUNCTION linearity of this representation arises directly from the fact that the expecta-

tion is a linear operator. The piecewise nature is the result of the fact that

the robot has the ability to select controls, and in different parts of the belief

space it will select different controls. All these statements will be proven in

this chapter.

This chapter discusses the general POMDP algorithm for calculating poli-

cies defined over the space of all belief distributions. This algorithm is com-

putationally cumbersome but correct for finite POMDPs; although a variant

will be discussed that is highly tractable. The subsequent chapter will dis-

cuss a number of more efficient POMDP algorithms, which are approximate

but scale to actual robotics problems.


