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This expression makes apparent that our sampling distribution is truly the

convolution of two Gaussians multiplied by a third. In the general SLAM

case, the sampling distribution possesses no closed form from which we

could easily sample. The culprit is the function h : If it were linear, this

probability would be Gaussian, a fact that shall become more obvious below.

In fact, not even the integral in (13.27) possesses a closed form solution. For

this reason, sampling from the probability (13.27) is difficult.

This observation motivates the replacement of h by a linear approxima-

tion. As common in this book, this approximation is obtained through a first

order Taylor expansion, given by the following linear function:
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Here we use the following abbreviations:
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The matrices Hm and Hx are the Jacobians of h . They are the derivatives

of h with respect to mct
and xt, respectively, evaluated at the expected

values of their arguments:
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Under this approximation, the desired sampling distribution (13.27) is a

Gaussian with the following parameters:
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