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1: Algorithm inverse_range_sensor_model(mi, xt, zt):

2: Let xi, yi be the center-of-mass of mi

3: r =
√

(xi − x)2 + (yi − y)2

4: φ = atan2(yi − y, xi − x) − θ

5: k = argminj |φ − θj,sens|

6: if r > min(zmax, z
k
t + α/2) or |φ − θk,sens| > β/2 then

7: return l0

8: if zk
t < zmax and |r − zk

t | < α/2

9: return locc

10: if r ≤ zk
t

11: return lfree
12: endif

Table 9.2 A simple inverse measurement model for robots equipped with range

finders. Here α is the thickness of obstacles, and β the width of a sensor beam. The

values locc and lfree in lines 9 and 11 denote the amount of evidence a reading carries

for the two different cases.

cell is shorter than the measured range by more than α/2. The left and center

panel of Figure 9.3 illustrates this calculation for the main cone of a sonar

beam.

A typical application of an inverse sensor model for ultrasound sensors

is shown in Figure 9.4. Starting with an initial map the robot successively

extends the map by incorporating local maps generated using the inverse

model. A larger occupancy grid map obtained with this model for the same

environment is depicted in Figure 9.5.

Figures 9.6 shows an example map next to a blueprint of a large open

exhibit hall, and relates it to the occupancy map acquired by a robot. The

map was generated using laser range data gathered in a few minutes. The

gray-level in the occupancy map indicates the posterior of occupancy over an

evenly spaced grid: The darker a grid cell, the more likely it is to be occupied.

While occupancy maps are inherently probabilistic, they tend to quickly con-

verge to estimates that are close to the two extreme posteriors, 1 and 0. In

comparison between the learned map and the blueprint, the occupancy grid

map shows all major structural elements, and obstacles as they were visi-


