
5.5 Motion and Maps 141

1: Algorithm motion_model_with_map(xt, ut, xt−1,m):

2: return p(xt | ut, xt−1) · p(xt | m)

1: Algorithm sample_motion_model_with_map(ut, xt−1,m):

2: do

3: xt = sample_motion_model(ut, xt−1)

3: π = p(xt | m)

4: until π > 0

5: return 〈xt, π〉

Table 5.7 Algorithm for computing p(xt | ut, xt−1, m), which utilizes a map m of

the environment. This algorithms bootstraps previous motion models (Tables 5.1, 5.3,

5.5, and 5.6) to models that take into account that robots cannot be placed in occupied

space in the map m.

in the map; otherwise it assumes a constant value. By multiplying p(xt | m)

and p(xt | ut, xt−1), we obtain a distribution that assigns all probability mass

to poses xt consistent with the map, which otherwise has the same shape

as p(xt | ut, xt−1). As η can be computed by normalization, this approxima-

tion of a map-based motion model can be computed efficiently without any

significant overhead compared to a map-free motion model.

Table 5.7 states the basic algorithms for computing and for sampling from

the map-based motion model. Notice that the sampling algorithm returns

a weighted sample, which includes an importance factor proportional to

p(xt | m). Care has to be taken in the implementation of the sample version,

to ensure termination of the inner loop. An example of the motion model

is illustrated in Figure 5.11. The density in Figure 5.11a is p(xt | ut, xt−1),

computed according to the velocity motion model. Now suppose the map m

possesses a long rectangular obstacle, as indicated in Figure 5.11b. The prob-

ability p(xt | m) is zero at all poses xt where the robot would intersect the

obstacle. Since our example robot is circular, this region is equivalent to the

obstacle grown by a robot radius—this is equivalent to mapping the obsta-

cle from workspace to the robot’s configuration space or pose space. The resultingCONFIGURATION SPACE

