
122 5 Robot Motion

(a) (b) (c)

Figure 5.3 The velocity motion model, for different noise parameter settings.

The function prob(x, b2) models the motion error. It computes the

probability of its parameter x under a zero-centered random variable with

variance b2 . Two possible implementations are shown in Table 5.2, for error

variables with normal distribution and triangular distribution, respectively.

Figure 5.3 shows graphical examples of the velocity motion model, pro-

jected into x-y-space. In all three cases, the robot sets the same translational

and angular velocity. Figure 5.3a shows the resulting distribution with mod-

erate error parameters α1 to α6. The distribution shown in Figure 5.3b is

obtained with smaller angular error (parameters α3 and α4) but larger trans-

lational error (parameters α1 and α2). Figure 5.3c shows the distribution

under large angular and small translational error.

5.3.2 Sampling Algorithm

For particle filters (c.f. Chapter 4.3), it suffices to sample from the motion

model p(xt | ut, xt−1), instead of computing the posterior for arbitrary xt, ut

and xt−1. Sampling from a conditional density is different than calculating

the density: In sampling, one is given ut and xt−1 and seeks to generate

a random xt drawn according to the motion model p(xt | ut, xt−1). When

calculating the density, one is also given xt generated through other means,

and one seeks to compute the probability of xt under p(xt | ut, xt−1).

The algorithm sample_motion_model_velocity in Table 5.3 generates ran-

dom samples from p(xt | ut, xt−1) for a fixed control ut and pose xt−1. It

accepts xt−1 and ut as input and generates a random pose xt according to

the distribution p(xt | ut, xt−1). Line 2 through 4 “perturb” the commanded

control parameters by noise, drawn from the error parameters of the kine-

matic motion model. The noise values are then used to generate the sample’s

5.3 Velocity Motion Model 123

1: Algorithm motion_model_velocity(xt, ut, xt−1):

2: µ =
1

2

(x − x′) cos θ + (y − y′) sin θ

(y − y′) cos θ − (x − x′) sin θ

3: x∗ =
x + x′

2
+ µ(y − y′)

4: y∗ =
y + y′

2
+ µ(x′ − x)

5: r∗ =
√

(x − x∗)2 + (y − y∗)2

6: ∆θ = atan2(y′ − y∗, x′ − x∗) − atan2(y − y∗, x − x∗)

7: v̂ =
∆θ

∆t
r∗

8: ω̂ =
∆θ

∆t

9: γ̂ = θ′−θ
∆t

− ω̂

10: return prob(v − v̂, α1v
2 + α2ω

2) · prob(ω − ω̂, α3v
2 + α4ω

2)

· prob(γ̂, α5v
2 + α6ω

2)

Table 5.1 Algorithm for computing p(xt | ut, xt−1) based on velocity information.

Here we assume xt−1 is represented by the vector (x y θ)T ; xt is represented by

(x′ y′ θ′)T ; and ut is represented by the velocity vector (v ω)T . The function

prob(a, b2) computes the probability of its argument a under a zero-centered dis-

tribution with variance b2 . It may be implemented using any of the algorithms in

Table 5.2.

1: Algorithm prob_normal_distribution(a, b2):

2: return
1√

2π b2
exp

{

−1

2

a2

b2

}

3: Algorithm prob_triangular_distribution(a, b2):

4: return max

{

0,
1√
6 b

− |a|
6 b2

}

Table 5.2 Algorithms for computing densities of a zero-centered normal distribu-

tion and a triangular distribution with variance b2 .

124 5 Robot Motion

1: Algorithm sample_motion_model_velocity(ut, xt−1):

2: v̂ = v + sample(α1v
2 + α2ω

2)

3: ω̂ = ω + sample(α3v
2 + α4ω

2)

4: γ̂ = sample(α5v
2 + α6ω

2)

5: x′ = x − v̂
ω̂

sin θ + v̂
ω̂

sin(θ + ω̂∆t)

6: y′ = y + v̂
ω̂

cos θ − v̂
ω̂

cos(θ + ω̂∆t)

7: θ′ = θ + ω̂∆t + γ̂∆t

8: return xt = (x′, y′, θ′)T

Table 5.3 Algorithm for sampling poses xt = (x′ y′ θ′)T from a pose xt−1 =

(x y θ)T and a control ut = (v ω)T . Note that we are perturbing the final orientation

by an additional random term, γ̂. The variables α1 through α6 are the parameters

of the motion noise. The function sample(b2) generates a random sample from a

zero-centered distribution with variance b2 . It may, for example, be implemented

using the algorithms in Table 5.4.

1: Algorithm sample_normal_distribution(b2):

2: return
1

2

12
∑

i=1

rand(−b, b)

3: Algorithm sample_triangular_distribution(b2):

4: return

√
6

2
[rand(−b, b) + rand(−b, b)]

Table 5.4 Algorithm for sampling from (approximate) normal and triangular dis-

tributions with zero mean and variance b2 ; see Winkler (1995: p293). The function

rand(x, y) is assumed to be a pseudo random number generator with uniform distri-

bution in [x, y].

5.3 Velocity Motion Model 125

(a) (b) (c)

Figure 5.4 Sampling from the velocity motion model, using the same parameters as

in Figure 5.3. Each diagram shows 500 samples.

new pose, in lines 5 through 7. Thus, the sampling procedure implements a

simple physical robot motion model that incorporates control noise in its pre-

diction, in just about the most straightforward way. Figure 5.4 illustrates the

outcome of this sampling routine. It depicts 500 samples generated by sam-

ple_motion_model_velocity. The reader might want to compare this figure

with the density depicted in Figure 5.3.

We note that in many cases, it is easier to sample xt than calculate the den-

sity of a given xt. This is because samples require only a forward simulation

of the physical motion model. To compute the probability of a hypothetical

pose amounts to retro-guessing of the error parameters, which requires us

to calculate the inverse of the physical motion model. The fact that particle

filters rely on sampling makes them specifically attractive from an imple-

mentation point of view.

5.3.3 Mathematical Derivation of the Velocity Motion Model

We will now derive the algorithms motion_model_velocity and sam-

ple_motion_model_velocity. As usual, the reader not interested in the

mathematical details is invited to skip this section at first reading, and con-

tinue in Chapter 5.4 (page 132). The derivation begins with a generative

model of robot motion, and then derives formulae for sampling and com-

puting p(xt | ut, xt−1) for arbitrary xt, ut, and xt−1.

Exact Motion

126 5 Robot Motion

<x ,y >c c

θ

<x,y>

r

x

y

θ−90

Figure 5.5 Motion carried out by a noise-free robot moving with constant velocities

v and ω and starting at (x y θ)T .

Before turning to the probabilistic case, let us begin by stating the kinematics

for an ideal, noise-free robot. Let ut = (v ω)T denote the control at time t. If

both velocities are kept at a fixed value for the entire time interval (t − 1, t],

the robot moves on a circle with radius

r =
∣

∣

∣

v

ω

∣

∣

∣(5.5)

This follows from the general relationship between the translational and ro-

tational velocities v and ω for an arbitrary object moving on a circular trajec-

tory with radius r:

v = ω · r(5.6)

Equation (5.5) encompasses the case where the robot does not turn at all (i.e.,

ω = 0), in which case the robot moves on a straight line. A straight line

corresponds to a circle with infinite radius, hence we note that r may be

infinite.

Let xt−1 = (x, y, θ)T be the initial pose of the robot, and suppose we keep

the velocity constant at (v ω)T for some time ∆t. As one easily shows, the

center of the circle is at

xc = x − v

ω
sin θ(5.7)

yc = y +
v

ω
cos θ(5.8)

5.3 Velocity Motion Model 127

The variables (xc yc)
T denote this coordinate. After ∆t time of motion, our

ideal robot will be at xt = (x′, y′, θ′)T with

x′

y′

θ′

 =

xc + v
ω

sin(θ + ω∆t)

yc − v
ω

cos(θ + ω∆t)

θ + ω∆t

(5.9)

=

x

y

θ

+

− v
ω

sin θ + v
ω

sin(θ + ω∆t)
v
ω

cos θ − v
ω

cos(θ + ω∆t)

ω∆t

The derivation of this expression follows from simple trigonometry: After

∆t units of time, the noise-free robot has progressed v · ∆t along the circle,

which caused its heading direction to turn by ω · ∆t. At the same time, its x

and y coordinate is given by the intersection of the circle about (xc yc)
T , and

the ray starting at (xc yc)
T at the angle perpendicular to ω · ∆t. The second

transformation simply substitutes (5.8) into the resulting motion equations.

Of course, real robots cannot jump from one velocity to another, and keep

velocity constant in each time interval. To compute the kinematics with non-

constant velocities, it is therefore common practice to use small values for

∆t, and to approximate the actual velocity by a constant within each time

interval. The (approximate) final pose is then obtained by concatenating

the corresponding cyclic trajectories using the mathematical equations just

stated.

Real Motion

In reality, robot motion is subject to noise. The actual velocities differ from

the commanded ones (or measured ones, if the robot possesses a sensor for

measuring velocity). We will model this difference by a zero-centered ran-

dom variable with finite variance. More precisely, let us assume the actual

velocities are given by

(

v̂

ω̂

)

=

(

v

ω

)

+

(

εα1v2+α2ω2

εα3v2+α4ω2

)

(5.10)

Here εb2 is a zero-mean error variable with variance b2 . Thus, the true

velocity equals the commanded velocity plus some small, additive error

(noise). In our model, the standard deviation of the error is proportional

to the commanded velocity. The parameters α1 to α4 (with αi ≥ 0 for

i = 1, . . . , 4) are robot-specific error parameters. They model the accuracy

of the robot. The less accurate a robot, the larger these parameters.

128 5 Robot Motion

-b b

(a)

b-b

(b)

Figure 5.6 Probability density functions with variance b2 : (a) Normal distribution,

(b) triangular distribution.

Two common choices for the error εb2 are the normal and the triangular

distribution.

The normal distribution with zero mean and variance b2 is given by theNORMAL DISTRIBUTION

density function

εb2 (a) =
1√

2π b2
e−

1

2

a
2

b2(5.11)

Figure 5.6a shows the density function of a normal distribution with

variance b2 . Normal distributions are commonly used to model noise in

continuous stochastic processes. Its support, which is the set of points a with

p(a) > 0, is ℜ.

The density of a triangular distribution with zero mean and variance b2 isTRIANGULAR

DISTRIBUTION given by

εb2 (a) = max
{

0, 1√
6 b

− |a|
6 b2

}

(5.12)

which is non-zero only in (−
√

6b;
√

6b). As Figure 5.6b suggests, the density

resembles the shape of a symmetric triangle—hence the name.

A better model of the actual pose xt = (x′ y′ θ′)T after executing the

motion command ut = (v ω)T at xt−1 = (x y θ)T is thus

x′

y′

θ′

 =

x

y

θ

+

− v̂
ω̂

sin θ + v̂
ω̂

sin(θ + ω̂∆t)
v̂
ω̂

cos θ − v̂
ω̂

cos(θ + ω̂∆t)

ω̂∆t

(5.13)

This equation is obtained by substituting the commanded velocity ut =

(v ω)T with the noisy motion (v̂ ω̂)T in (5.9). However, this model is still not

very realistic, for reasons discussed in turn.

5.3 Velocity Motion Model 129

Final Orientation

The two equations given above exactly describe the final location of the robot

given that the robot actually moves on an exact circular trajectory with ra-

dius r = v̂
ω̂

. While the radius of this circular segment and the distance

traveled is influenced by the control noise, the very fact that the trajectory

is circular is not. The assumption of circular motion leads to an important

degeneracy. In particular, the support of the density p(xt | ut, xt−1) is two-

dimensional, within a three-dimensional embedding pose space. The fact

that all posterior poses are located on a two-dimensional manifold within

the three-dimensional pose space is a direct consequence of the fact that we

used only two noise variables, one for v and one for ω. Unfortunately, this

degeneracy has important ramifications when applying Bayes filters for state

estimation.

In reality, any meaningful posterior distribution is of course not degener-

ate, and poses can be found within a three-dimensional space of variations

in x, y, and θ. To generalize our motion model accordingly, we will assume

that the robot performs a rotation γ̂ when it arrives at its final pose. Thus,

instead of computing θ′ according to (5.13), we model the final orientation

by

θ′ = θ + ω̂∆t + γ̂∆t(5.14)

with

γ̂ = εα5v2+α6ω2(5.15)

Here α5 and α6 are additional robot-specific parameters that determine the

variance of the additional rotational noise. Thus, the resulting motion model

is as follows:

x′

y′

θ′

 =

x

y

θ

+

− v̂
ω̂

sin θ + v̂
ω̂

sin(θ + ω̂∆t)
v̂
ω̂

cos θ − v̂
ω̂

cos(θ + ω̂∆t)

ω̂∆t + γ̂∆t

(5.16)

Computation of p(xt | ut, xt−1)

The algorithm motion_model_velocity in Table 5.1 implements the compu-

tation of p(xt | ut, xt−1) for given values of xt−1 = (x y θ)T , ut = (v ω)T ,

and xt = (x′ y′ θ′)T . The derivation of this algorithm is somewhat involved,

as it effectively implements an inverse motion model. In particular, mo-

tion_model_velocity determines motion parameters ût = (v̂ ω̂)T from the

130 5 Robot Motion

poses xt−1 and xt, along with an appropriate final rotation γ̂. Our derivation

makes it obvious as to why a final rotation is needed: For almost all values

of xt−1, ut, and xt, the motion probability would simply be zero without

allowing for a final rotation.

Let us calculate the probability p(xt | ut, xt−1) of control action ut = (v ω)T

carrying the robot from the pose xt−1 = (x y θ)T to the pose xt = (x′ y′ θ′)T

within ∆t time units. To do so, we will first determine the control û = (v̂ ω̂)T

required to carry the robot from xt−1 to position (x′ y′), regardless of the

robot’s final orientation. Subsequently, we will determine the final rotation

γ̂ necessary for the robot to attain the orientation θ′. Based on these calcula-

tions, we can then easily calculate the desired probability p(xt | ut, xt−1).

The reader may recall that our model assumes that the robot travels with

a fixed velocity during ∆t, resulting in a circular trajectory. For a robot that

moved from xt−1 = (x y θ)T to xt = (x′ y′)T , the center of the circle is

defined as (x∗ y∗)T and given by

(

x∗

y∗

)

=

(

x

y

)

+

(

−λ sin θ

λ cos θ

)

=

(

x+x′

2 + µ(y − y′)
y+y′

2 + µ(x′ − x)

)

(5.17)

for some unknown λ, µ ∈ ℜ. The first equality is the result of the fact that

the circle’s center is orthogonal to the initial heading direction of the robot;

the second is a straightforward constraint that the center of the circle lies on

a ray that lies on the half-way point between (x y)T and (x′ y′)T and is

orthogonal to the line between these coordinates.

Usually, Equation (5.17) has a unique solution—except in the degenerate

case of ω = 0, in which the center of the circle lies at infinity. As the reader

might want to verify, the solution is given by

µ =
1

2

(x − x′) cos θ + (y − y′) sin θ

(y − y′) cos θ − (x − x′) sin θ
(5.18)

and hence
(

x∗

y∗

)

=

(

x+x′

2 + 1
2

(x−x′) cos θ+(y−y′) sin θ

(y−y′) cos θ−(x−x′) sin θ
(y − y′)

y+y′

2 + 1
2

(x−x′) cos θ+(y−y′) sin θ

(y−y′) cos θ−(x−x′) sin θ
(x′ − x)

)

(5.19)

The radius of the circle is now given by the Euclidean distance

r∗ =
√

(x − x∗)2 + (y − y∗)2 =
√

(x′ − x∗)2 + (y′ − y∗)2(5.20)

Furthermore, we can now calculate the change of heading direction

∆θ = atan2(y′ − y∗, x′ − x∗) − atan2(y − y∗, x − x∗)(5.21)

5.3 Velocity Motion Model 131

Here atan2 is the common extension of the arcus tangens of y/x extended

to the ℜ2 (most programming languages provide an implementation of this

function):

atan2(y, x) =

atan(y/x) if x > 0

sign(y) (π − atan(|y/x|)) if x < 0

0 if x = y = 0

sign(y) π/2 if x = 0, y 6= 0

(5.22)

Since we assume that the robot follows a circular trajectory, the translational

distance between xt and xt−1 along this circle is

∆dist = r∗ · ∆θ(5.23)

From ∆dist and ∆θ, it is now easy to compute the velocities v̂ and ω̂:

ût =

(

v̂

ω̂

)

= ∆t−1

(

∆dist

∆θ

)

(5.24)

The rotational velocity γ̂ needed to achieve the final heading θ′ of the robot in

(x′y′) within ∆t can be determined according to (5.14) as:

γ̂ = ∆t−1(θ′ − θ) − ω̂(5.25)

The motion error is the deviation of ût and γ̂ from the commanded velocity

ut = (v ω)T and γ = 0, as defined in Equations (5.24) and (5.25).

verr = v − v̂(5.26)

ωerr = ω − ω̂(5.27)

γerr = γ̂(5.28)

Under our error model, specified in Equations (5.10), and (5.15), these errors

have the following probabilities:

εα1v2+α2ω2 (verr)(5.29)

εα3v2+α4ω2 (ωerr)(5.30)

εα5v2+α6ω2 (γerr)(5.31)

where εb2 denotes a zero-mean error variable with variance b2 , as before.

Since we assume independence between the different sources of error, the

desired probability p(xt | ut, xt−1) is the product of these individual errors:

p(xt | ut, xt−1) = εα1v2+α2ω2 (verr) · εα3v2+α4ω2 (ωerr) · εα5v2+α6ω2 (γerr)(5.32)

132 5 Robot Motion

To see the correctness of the algorithm motion_model_velocity in Table 5.1,

the reader may notice that this algorithm implements this expression. More

specifically, lines 2 to 9 are equivalent to Equations (5.18), (5.19), (5.20), (5.21),

(5.24), and (5.25). Line 10 implements (5.32), substituting the error terms as

specified in Equations (5.29) to (5.31).

Sampling from p(x′ | u, x)

The sampling algorithm sample_motion_model_velocity in Table 5.3 imple-

ments a forward model, as discussed earlier in this section. Lines 5 through 7

correspond to Equation (5.16). The noisy values calculated in lines 2 through

4 correspond to Equations (5.10) and (5.15).

The algorithm sample_normal_distribution in Table 5.4 implements a

common approximation to sampling from a normal distribution. This ap-

proximation exploits the central limit theorem, which states that any av-

erage of non-degenerate random variables converges to a normal distribu-

tion. By averaging 12 uniform distributions, sample_normal_distribution

generates values that are approximately normal distributed; though

technically the resulting values lie always in [−2b, 2b]. Finally, sam-

ple_triangular_distribution in Table 5.4 implements a sampler for triangular

distributions.

5.4 Odometry Motion Model

The velocity motion model discussed thus far uses the robot’s velocity to

compute posteriors over poses. Alternatively, one might want to use the

odometry measurements as the basis for calculating the robot’s motion over

time. Odometry is commonly obtained by integrating wheel encoder infor-

mation; most commercial robots make such integrated pose estimation avail-

able in periodic time intervals (e.g., every tenth of a second). This leads to

a second motion model discussed in this chapter, the odometry motion model.

The odometry motion model uses odometry measurements in lieu of con-

trols.

Practical experience suggests that odometry, while still erroneous, is usu-

ally more accurate than velocity. Both suffer from drift and slippage, but

velocity additionally suffers from the mismatch between the actual motion

controllers and its (crude) mathematical model. However, odometry is only

available in retrospect, after the robot moved. This poses no problem for fil-

5.4 Odometry Motion Model 133

δrot1

δtrans

δrot2

Figure 5.7 Odometry model: The robot motion in the time interval (t − 1, t] is ap-

proximated by a rotation δrot1, followed by a translation δtrans and a second rotation

δrot2. The turns and translations are noisy.

ter algorithms, such as the localization and mapping algorithms discussed

in later chapters. But it makes this information unusable for accurate motion

planning and control.

5.4.1 Closed Form Calculation

Technically, odometric information are sensor measurements, not controls.

To model odometry as measurements, the resulting Bayes filter would have

to include the actual velocity as state variables—which increases the dimen-

sion of the state space. To keep the state space small, it is therefore common

to consider odometry data as if it were control signals. In this section, we

will treat odometry measurements just like controls. The resulting model is

at the core of many of today’s best probabilistic robot systems.

Let us define the format of our control information. At time t, the correct

pose of the robot is modeled by the random variable xt. The robot odome-

try estimates this pose; however, due to drift and slippage there is no fixed

coordinate transformation between the coordinates used by the robot’s in-

ternal odometry and the physical world coordinates. In fact, knowing this

transformation would solve the robot localization problem!

The odometry model uses the relative motion information, as measured by

the robot’s internal odometry. More specifically, in the time interval (t− 1, t],

the robot advances from a pose xt−1 to pose xt. The odometry reports back

to us a related advance from x̄t−1 = (x̄ ȳ θ̄)T to x̄t = (x̄′ ȳ′ θ̄′)T . Here the

134 5 Robot Motion

1: Algorithm motion_model_odometry(xt, ut, xt−1):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄) − θ̄

3: δtrans =
√

(x̄ − x̄′)2 + (ȳ − ȳ′)2

4: δrot2 = θ̄′ − θ̄ − δrot1

5: δ̂rot1 = atan2(y′ − y, x′ − x) − θ

6: δ̂trans =
√

(x − x′)2 + (y − y′)2

7: δ̂rot2 = θ′ − θ − δ̂rot1

8: p1 = prob(δrot1 − δ̂rot1, α1 δ̂2
rot1 + α2 δ̂2

trans)

9: p2 = prob(δtrans − δ̂trans, α3 δ̂2
trans + α4 δ̂2

rot1 + α4 δ̂2
rot2)

10: p3 = prob(δrot2 − δ̂rot2, α1 δ̂2
rot2 + α2 δ̂2

trans)

11: return p1 · p2 · p3

Table 5.5 Algorithm for computing p(xt | ut, xt−1) based on odometry information.

Here the control ut is given by (x̄t−1 x̄t)
T , with x̄t−1 = (x̄ ȳ θ̄) and x̄t = (x̄′ ȳ′ θ̄′).

bar indicates that these are odometry measurements embedded in a robot-

internal coordinate whose relation to the global world coordinates is un-

known. The key insight for utilizing this information in state estimation is

that the relative difference between x̄t−1 and x̄t, under an appropriate defi-

nition of the term “difference,” is a good estimator for the difference of the

true poses xt−1 and xt. The motion information ut is, thus, given by the pair

ut =

(

x̄t−1

x̄t

)

(5.33)

To extract relative odometry, ut is transformed into a sequence of three steps:

a rotation, followed by a straight line motion (translation), and another ro-

tation. Figure 5.7 illustrates this decomposition: the initial turn is called

δrot1, the translation δtrans, and the second rotation δrot2. As the reader

easily verifies, each pair of positions (s̄ s̄′) has a unique parameter vector

5.4 Odometry Motion Model 135

(a) (b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.

(δrot1 δtrans δrot2)
T , and these parameters are sufficient to reconstruct the

relative motion between s̄ and s̄′. Thus, δrot1, δtrans, δrot2 form together a suf-

ficient statistics of the relative motion encoded by the odometry.

The probabilistic motion model assumes that these three parameters are

corrupted by independent noise. The reader may note that odometry motion

uses one more parameter than the velocity vector defined in the previous

section, for which reason we will not face the same degeneracy that led to

the definition of a “final rotation.”

Before delving into mathematical detail, let us state the basic algorithm

for calculating this density in closed form. Table 5.5 depicts the algorithm

for computing p(xt | ut, xt−1) from odometry. This algorithm accepts as an

input an initial pose xt−1, a pair of poses ut = (x̄t−1 x̄t)
T obtained from the

robot’s odometry, and a hypothesized final pose xt. It outputs the numerical

probability p(xt | ut, xt−1).

Lines 2 to 4 in Table 5.5 recover relative motion parameters

(δrot1 δtrans δrot2)
T from the odometry readings. As before, they im-

plement an inverse motion model. The corresponding relative motion

parameters (δ̂rot1 δ̂trans δ̂rot2)
T for the given poses xt−1 and xt are cal-

culated in lines 5 through 7 of this algorithm. Lines 8 to 10 compute the

error probabilities for the individual motion parameters. As above, the

function prob(a, b2) implements an error distribution over a with zero

mean and variance b2 . Here the implementer must observe that all angular

differences must lie in [−π, π]. Hence the outcome of δrot2 − δ̄rot2 has to be

truncated correspondingly—a common error that tends to be difficult to

debug. Finally, line 11 returns the combined error probability, obtained by

multiplying the individual error probabilities p1, p2, and p3. This last step

136 5 Robot Motion

1: Algorithm sample_motion_model_odometry(ut, xt−1):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄) − θ̄

3: δtrans =
√

(x̄ − x̄′)2 + (ȳ − ȳ′)2

4: δrot2 = θ̄′ − θ̄ − δrot1

5: δ̂rot1 = δrot1 − sample(α1 δ2
rot1 + α2 δ2

trans)

6: δ̂trans = δtrans − sample(α3 δ2
trans + α4 δ2

rot1 + α4 δ2
rot2)

7: δ̂rot2 = δrot2 − sample(α1 δ2
rot2 + α2 δ2

trans)

8: x′ = x + δ̂trans cos(θ + δ̂rot1)

9: y′ = y + δ̂trans sin(θ + δ̂rot1)

10: θ′ = θ + δ̂rot1 + δ̂rot2

11: return xt = (x′, y′, θ′)T

Table 5.6 Algorithm for sampling from p(xt | ut, xt−1) based on odometry informa-

tion. Here the pose at time t is represented by xt−1 = (x y θ)T . The control is a differ-

entiable set of two pose estimates obtained by the robot’s odometer, ut = (x̄t−1 x̄t)
T ,

with x̄t−1 = (x̄ ȳ θ̄) and x̄t = (x̄′ ȳ′ θ̄′).

assumes independence between the different error sources. The variables

α1 through α4 are robot-specific parameters that specify the noise in robot

motion.

Figure 5.8 shows examples of our odometry motion model for different

values of the error parameters α1 to α4. The distribution in Figure 5.8a is a

typical one, whereas the ones shown in Figures 5.8b and 5.8c indicate un-

usually large translational and rotational errors, respectively. The reader

may want to carefully compare these diagrams with those in Figure 5.3 on

page 122. The smaller the time between two consecutive measurements, the

more similar those different motion models. Thus, if the belief is updated

frequently e.g., every tenth of a second for a conventional indoor robot, the

difference between these motion models is not very significant.

5.4 Odometry Motion Model 137

(a) (b) (c)

Figure 5.9 Sampling from the odometry motion model, using the same parameters

as in Figure 5.8. Each diagram shows 500 samples.

5.4.2 Sampling Algorithm

If particle filters are used for localization, we would also like to have an al-

gorithm for sampling from p(xt | ut, xt−1). Recall that particle filters (Chap-

ter 4.3) require samples of p(xt | ut, xt−1), rather than a closed-form expres-

sion for computing p(xt | ut, xt−1) for any xt−1, ut, and xt. The algorithm

sample_motion_model_odometry, shown in Table 5.6, implements the sam-

pling approach. It accepts an initial pose xt−1 and an odometry reading ut

as input, and outputs a random xt distributed according to p(xt | ut, xt−1).

It differs from the previous algorithm in that it randomly guesses a pose xt

(lines 5-10), instead of computing the probability of a given xt. As before,

the sampling algorithm sample_motion_model_odometry is somewhat eas-

ier to implement than the closed-form algorithm motion_model_odometry,

since it side-steps the need for an inverse model.

Figure 5.9 shows examples of sample sets generated by sam-

ple_motion_model_odometry, using the same parameters as in the model

shown in Figure 5.8. Figure 5.10 illustrates the motion model “in action”

by superimposing sample sets from multiple time steps. This data has been

generated using the motion update equations of the algorithm particle_filter

(Table 4.3), assuming the robot’s odometry follows the path indicated by

the solid line. The figure illustrates how the uncertainty grows as the robot

moves. The samples are spread across an increasingly large space.

5.4.3 Mathematical Derivation of the Odometry Motion Model

The derivation of the algorithms is relatively straightforward, and once again

may be skipped at first reading. To derive a probabilistic motion model using

138 5 Robot Motion

10 meters

Start location

Figure 5.10 Sampling approximation of the position belief for a non-sensing robot.

The solid line displays the actions, and the samples represent the robot’s belief at

different points in time.

odometry, we recall that the relative difference between any two poses is rep-

resented by a concatenation of three basic motions: a rotation, a straight-line

motion (translation), and another rotation. The following equations show

how to calculate the values of the two rotations and the translation from the

odometry reading ut = (x̄t−1 x̄t)
T , with x̄t−1 = (x̄ ȳ θ̄) and x̄t = (x̄′ ȳ′ θ̄′):

δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄) − θ̄(5.34)

δtrans =
√

(x̄ − x̄′)2 + (ȳ − ȳ′)2(5.35)

δrot2 = θ̄′ − θ̄ − δrot1(5.36)

To model the motion error, we assume that the “true” values of the rotation

and translation are obtained from the measured ones by subtracting inde-

5.4 Odometry Motion Model 139

pendent noise εb2 with zero mean and variance b2 :

δ̂rot1 = δrot1 − εα1δ2

rot1
+α2δ2

trans

(5.37)

δ̂trans = δtrans − εα3 δ2

trans
+α4 δ2

rot1
+α4 δ2

rot2

(5.38)

δ̂rot2 = δrot2 − εα1δ2

rot2
+α2δ2

trans

(5.39)

As in the previous section, εb2 is a zero-mean noise variable with

variance b2 . The parameters α1 to α4 are robot-specific error parameters,

which specify the error accrued with motion.

Consequently, the true position, xt, is obtained from xt−1 by an initial rota-

tion with angle δ̂rot1, followed by a translation with distance δ̂trans, followed

by another rotation with angle δ̂rot2. Thus,

x′

y′

θ′

 =

x

y

θ

+

δ̂trans cos(θ + δ̂rot1)

δ̂trans sin(θ + δ̂rot1)

δ̂rot1 + δ̂rot2

(5.40)

Notice that algorithm sample_motion_model_odometry implements Equa-

tions (5.34) through (5.40).

The algorithm motion_model_odometry is obtained by noticing that lines

5-7 compute the motion parameters δ̂rot1, δ̂trans, and δ̂rot2 for the hypothe-

sized pose xt, relative to the initial pose xt−1. The difference of both,

δrot1 − δ̂rot1(5.41)

δtrans − δ̂trans(5.42)

δrot2 − δ̂rot2(5.43)

is the error in odometry, assuming of course that xt is the true final pose. The

error model (5.37) to (5.39) implies that the probability of these errors is given

by

p1 = εα1δ2

rot1
+α2δ2

trans

(δrot1 − δ̂rot1)(5.44)

p2 = εα3 δ2

trans
+α4 δ2

rot1
+α4 δ2

rot2

(δtrans − δ̂trans)(5.45)

p3 = εα1δ2

rot2
+α2δ2

trans

(δrot2 − δ̂rot2)(5.46)

with the distributions ε defined as above. These probabilities are computed

in lines 8-10 of our algorithm motion_model_odometry, and since the errors

are assumed to be independent, the joint error probability is the product p1 ·
p2 · p3 (c.f., line 11).

