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1: Algorithm Discrete_Bayes_filter({pk,t−1}, ut, zt):

2: for all k do

3: p̄k,t =
∑

i

p(Xt = xk | ut, Xt−1 = xi) pi,t−1

4: pk,t = η p(zt | Xt = xk) p̄k,t
5: endfor

6: return {pk,t}

Table 4.1 The discrete Bayes filter. Here xi, xk denote individual states.

with a finite sum. The variables xi and xk denote individual states, of which

there may only be finitely many. The belief at time t is an assignment of a

probability to each state xk, denoted pk,t. Thus, the input to the algorithm

is a discrete probability distribution { pk,t−1 }, along with the most recent

control ut and measurement zt. Line 3 calculates the prediction, the belief

for the new state based on the control alone. This prediction is then updated

in line 4, so as to incorporate the measurement. The discrete Bayes filter

algorithm is popular in many areas of signal processing, where it is often

referred to as the forward pass of a hidden Markov model, or HMM.HIDDEN MARKOV

MODEL

4.1.2 Continuous State

Of particular interest will be the use of discrete Bayes filters as an approxi-

mate inference tool for continuous state spaces. As noted above, such filters

are called histogram filters. Figure 4.1 illustrates how a histogram filter rep-

resents a random variable and its nonlinear transform. Shown there is the

projection of a histogrammed Gaussian through a nonlinear function. The

original Gaussian distribution possesses 10 bins. So does the projected prob-

ability distribution, but in two of the resulting bins the probability is so close

to zero that they cannot be seen in this figure. Figure 4.1 also shows the

correct continuous distributions for comparison.

Histogram filters decompose a continuous state space into finitely many

bins, or regions:

dom(Xt) = x1,t ∪ x2,t ∪ . . .xK,t(4.1)


