
13.8 Efficient Implementation 465

size of the map N . Furthermore, a naive implementation of data association

may result in evaluating the measurement likelihood for each of the N fea-

tures in the map, resulting again in linear complexity in N . We note that a

poor implementation of the sampling process might easily add another logN

to the update complexity.

Efficient implementations of FastSLAM require only O(M logN) update

time. This is logarithmic in the size of the map N . First, consider the situ-

ation with known data association. Linear copying costs can be avoided by

introducing a data structure for representing particles that allow for more

selective updates. The basic idea is to organize the map as a balanced binary

tree. Figure 13.8a shows such a tree for a single particle, in the case of N = 8

features. Notice that all Gaussian parameters µ
[k]
j and Σ

[k]
j for all j are located

at the leaves of the tree. Assuming that the tree is approximately balanced,

accessing a leaf requires time logarithmic in N .

Suppose FastSLAM incorporates a new control ut and a new measurement

zt. Each new particle in Yt will differ from the corresponding one in Yt−1 in

two ways: First, it will possess a different pose estimate obtained via (13.26),

and second, the observed feature’s Gaussian will have been updated, as spec-

ified in Equations (13.47) and (13.48). All other Gaussian feature estimates,

however, will be equivalent to the generating particle. When copying the

particle, thus, only a single path has to be modified in the tree representing

all Gaussians, leading to the logarithmic update time.

An illustration of this “trick” is shown in Figure 13.8b: Here we assume

cit = 3, hence only the Gaussian parameters µ
[k]
3 and Σ

[k]
3 are updated. Instead

of generating an entire new tree, only a single path is created, leading to the

Gaussian cit = 3. This path is an incomplete tree. The tree is completed by

copying the missing pointers from the tree of the generating particle. Thus,

branches that leave the path will point to the same (unmodified) subtree as

that of the generating tree. Clearly, generating this tree takes only time loga-

rithmic in N . Moreover, accessing a Gaussian also takes time logarithmic in

N , since the number of steps required to navigate to a leaf of the tree is equiv-

alent to the length of the path (which is by definition logarithmic). Thus, both

generating and accessing a partial tree can be done in time O(logN). Since

in each updating step M new particles are created, an entire update requires

time in O(M logN).

Organizing particles in trees raises the question as to when to deallocate

memory. Memory deallocation can equally be implemented in amortized

logarithmic time. The idea is to assign a variable to each node—internal


