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Following the sparsification idea discussed in general terms in the previ-

ous section, we now replace p(xt | m
0,m+,m− = 0) by p(xt | m

+,m− = 0)

and thereby drop the dependence on m0.

p̃(xt,m | z1:t, u1:t, c1:t)(12.24)

= p(xt | m
+,m− = 0, z1:t, u1:t, c1:t) p(m

0,m+,m− | z1:t, u1:t, c1:t)

This approximation is obviously equivalent to the following expression:

p̃(xt,m | z1:t, u1:t, c1:t)(12.25)

=
p(xt,m

+ | m− = 0, z1:t, u1:t, c1:t)

p(m+ | m− = 0, z1:t, u1:t, c1:t)
p(m0,m+,m− | z1:t, u1:t, c1:t)

12.5.3 Mathematical Derivation of the Sparsification

In the remainder of this section, we show that the algorithm

SEIF_sparsification in Table 12.4 implements this probabilistic calcula-

tion, and that it does so in constant time. We begin by calculating the

information matrix for the distribution p(xt,m
0,m+ | m− = 0) of all

variables but m−, and conditioned on m− = 0. This is obtained by extracting

the sub-matrix of all state variables but m−:

Ω0
t = Fx,m+,m0 FT

x,m+,m0 Ωt Fx,m+,m0 FT
x,m+,m0(12.26)

With that, the matrix inversion lemma (Table 3.2 on page 50) leads to the fol-

lowing information matrices for the terms p(xt,m
+ | m− = 0, z1:t, u1:t, c1:t)

and p(m+ | m− = 0, z1:t, u1:t, c1:t), denoted Ω1
t and Ω2

t , respectively:

Ω1
t = Ω0

t − Ω0
t Fm0

(FT
m0

Ω0
t Fm0

)−1 FT
m0

Ω0
t(12.27)

Ω2
t = Ω0

t − Ω0
t Fx,m0

(FT
x,m0

Ω0
t Fx,m0

)−1 FT
x,m0

Ω0
t(12.28)

Here the various F -matrices are projection matrices that project the full state

yt into the appropriate sub-state containing only a subset of all variables—

in analogy to the matrix Fx used in various previous algorithms. The final

term in our approximation (12.25), p(m0,m+,m− | z1:t, u1:t, c1:t), possesses

the following information matrix:

Ω3
t = Ωt − ΩtFx(F

T
x ΩtFx)

−1FT
x Ωt(12.29)

Putting these expressions together according to Equation (12.25) yields the

following information matrix, in which the feature m0 is now indeed deacti-

vated:

Ω̃t = Ω1
t − Ω2

t +Ω3
t(12.30)
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= Ωt − Ω0
t Fm0

(FT
m0

Ω0
t Fm0

)−1 FT
m0

Ω0
t

+ Ω0
t Fx,m0

(FT
x,m0

Ω0
t Fx,m0

)−1 FT
x,m0

Ω0
t

−Ωt Fx (FT
x Ωt Fx)

−1 FT
x Ωt

The resulting information vector is now obtained by the following simple

consideration:

ξ̃t = Ω̃t µt(12.31)

= (Ωt − Ωt + Ω̃t) µt

= Ωt µt + (Ω̃t − Ωt) µt

= ξt + (Ω̃t − Ωt) µt

This completes the derivation of lines 3 to 5 in Table 12.4.

12.6 Amortized Approximate Map Recovery

The final update step in SEIFs is concerned with the computation of the mean

µ. Throughout this section, we will drop the time index from our notation,

since it plays no role in the techniques to be discussed. So we will write µ

instead of µt.

Before deriving an algorithm for recovering the state estimate µ from the

information form, let us briefly consider what parts of µ are needed in SEIFs,

and when. SEIFs need the state estimate µ of the robot pose and the active

features in the map. These estimates are needed at three different occasions:

1. The mean is used for the linearization of the motion model, which takes

place in lines 3, 4, and 10 in Table 12.2.

2. It is also used for linearization of the measurement update, see lines 6, 8,

10, 13 in Table 12.3.

3. Finally, it is used in the sparsification step, specifically in line 4 in Ta-

ble 12.4.

However, we never need the full vector µ. We only need an estimate of the

robot pose, and an estimate of the locations of all active features. This is a

small subset of all state variables in µ. Nevertheless, computing these esti-

mates efficiently requires some additional mathematics, as the exact approach

for recovering the mean via µ = Ω−1 ξ requires matrix inversion or the use

of some other optimization technique—even when recovering a subset of

variables.
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Once again, the key insight is derived from the sparseness of the matrix

Ω. The sparseness enables us do define an iterative algorithm for recovering

state variables online, as the data is being gathered and the estimates ξ and

Ω are being constructed. To do so, it will prove convenient to reformulate

µ = Ω−1 ξ as an optimization problem. As we will show in just a minute, the

state µ is the mode

µ̂ = argmax
µ

p(µ)(12.32)

of the following Gaussian distribution, defined over the variable µ:

p(µ) = η exp
{

− 1

2
µT Ω µ+ ξT µ

}

(12.33)

Here µ is a vector of the same form and dimensionality as µ. To see that this

is indeed the case, we note that the derivative of p(µ) vanishes at µ = Ω−1 ξ:

∂p(µ)

∂µ
= η (−Ω µ+ ξ) exp

{

− 1

2
µT Ω µ+ ξT µ

} !
= 0(12.34)

which implies Ω µ = ξ or, equivalently, µ = Ω−1 ξ.

This transformation suggests that recovering the state vector µ is equiva-

lent to finding the mode of (12.33), which now has become an optimization

problem. For this optimization problem, we will now describe an iterative

hill climbing algorithm which, thanks to the sparseness of the information

matrix.

Our approach is an instantiation of coordinate descent. For simplicity, weCOORDINATE DESCENT

state it here for a single coordinate only; our implementation iterates a con-

stant number K of such optimizations after each measurement update step.

The mode µ̂ of (12.33) is attained at:

µ̂ = argmax
µ

exp
{

− 1

2
µT Ω µ+ ξT µ

}

(12.35)

= argmin
µ

1

2
µT Ω µ− ξT µ

We note that the argument of the min-operator in (12.35) can be written in a

form that makes the individual coordinate variables µi (for the i-th coordi-

nate of µt) explicit:

1

2
µT Ω µ− ξTµ = 1

2

∑

i

∑

j

µT
i Ωi,j µj −

∑

i

ξTi µi(12.36)

where Ωi,j is the element with coordinates (i, j) in the matrix Ω, and ξi if the

i-th component of the vector ξ. Taking the derivative of this expression with


