
11.4 Mathematical Derivation of GraphSLAM 361

feature in the map:

Fj =







0 · · · 0 1 0 0 0 · · · 0

0 · · · 0 0 1 0 0 · · · 0

0 · · · 0 0 0 1
︸ ︷︷ ︸

j−th feature

0 · · · 0







(11.34)

This insight makes it possible to decompose the implement Equations (11.31)

and (11.32) into a sequential update:

Ω̃ = Ωx0:t,x0:t
−
∑

j

Ωx0:t,j Ω
−1
j,j Ωj,x0:t

(11.35)

ξ̃ = ξx0:t
−
∑

j

Ωx0:t,j Ω
−1
j,j ξj(11.36)

The matrix Ωx0:t,j is non-zero only for elements in τ(j), the set of poses at

which feature j was observed. This essentially proves the correctness of the

reduction algorithm GraphSLAM_reduce in Table 11.3. The operation per-

formed on Ω in this algorithm can be thought of as the variable elimination

algorithm for matrix inversion, applied to the feature variables but not the

robot pose variables.

11.4.6 Recovering the Path and the Map

The algorithm GraphSLAM_solve in Table 11.4 calculates the mean and

variance of the Gaussian N (ξ̃, Ω̃), using the standard equations, see Equa-

tions (3.72) and (3.73) on page 72:

Σ̃ = Ω̃−1(11.37)

µ̃ = Σ̃ ξ̃(11.38)

In particular, this operation provides us with the mean of the posterior on

the robot path; it does not give us the locations of the features in the map.

It remains to recover the second factor of Equation (11.26):

p(m | x0:t, z1:t, u1:t, c1:t)(11.39)

The conditioning lemma, stated and proved in Table 11.7, shows that this prob-

ability distribution is Gaussian with the parameters

Σm = Ω−1
m,m(11.40)

µm = Σm(ξm − Ωm,x0:t
µ̃ )(11.41)



362 11 The GraphSLAM Algorithm

Here ξm and Ωm,m are the subvector of ξ, and the submatrix of Ω, respec-

tively, restricted to the map variables. The matrix Ωm,x0:t
is the off-diagonal

submatrix of Ω that connects the robot path to the map. As noted before,

Ωm,m is block-diagonal, hence we can decompose

p(m | x0:t, z1:t, u1:t, c1:t) =
∏

j

p(mj | x0:t, z1:t, u1:t, c1:t)(11.42)

where each p(mj | x0:t, z1:t, u1:t, c1:t) is distributed according to

Σj = Ω−1
j,j(11.43)

µj = Σj(ξj − Ωj,x0:t
µ̃) = Σj(ξj − Ωj,τ(j)µ̃τ(j))(11.44)

The last transformation exploited the fact that the submatrix Ωj,x0:t
is zero ex-

cept for those pose variables τ(j) from which the j-th feature was observed.

It is important to notice that this is a Gaussian p(m | x0:t, z1:t, u1:t, c1:t)

conditioned on the true path x0:t. In practice, we do not know the path,

hence one might want to know the posterior p(m | z1:t, u1:t, c1:t) with-

out the path in the conditioning set. This Gaussian cannot be factored in

the moments parameterization, as locations of different features are corre-

lated through the uncertainty over the robot pose. For this reason, Graph-

SLAM_solve returns the mean estimate of the posterior but only the covari-

ance over the robot path. Luckily, we never need the full Gaussian in mo-

ments representation—which would involve a fully populated covariance

matrix of massive dimensions—as all essential questions pertaining to the

SLAM problem can be answered at least in approximation without know-

ledge of Σ.

11.5 Data Association in GraphSLAM

Data association in GraphSLAM is realized through correspondence variables,

just as in EKF SLAM. GraphSLAM searches for a single best correspondence

vector, instead of calculating an entire distribution over correspondences.

Thus, finding a correspondence vector is a search problem. However, it shall

prove convenient to define correspondences slightly differently in Graph-

SLAM than before: correspondences are defined over pairs of features in the

map, rather than associations of measurements to features. Specifically, we

say c(j, k) = 1 if mj and mk correspond to the same physical feature in the

world. Otherwise, c(j, k) = 0. This feature-correspondence is in fact logi-

cally equivalent to the correspondence defined in the previous section, but it

simplifies the statement of the basic algorithm.


