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The left term in the final integral is the measurement likelihood assuming

knowledge of the robot location xt. This likelihood is given by a Gaussian

with mean at the measurement that is expected at location xt. This measure-

ment, denoted ẑi
t
, is provided by the measurement function h. The covari-

ance of the Gaussian is given by the measurement noise Qt.
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(7.18) follows by applying our Taylor expansion (7.13) to h. Plugging this

equation back into (7.17), and replacing bel(xt) by its Gaussian form, we get

the following measurement likelihood:
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where ⊗ denotes the familiar convolution over the variable xt. This equa-

tion reveals that the likelihood function is a convolution of two Gaussians;

one representing the measurement noise, the other representing the state

uncertainty. We already encountered integrals of this form in Chapter 3.2,

where we derived the motion update of the Kalman filter and the EKF. The

closed-form solution to this integral is derived completely analogously to

those derivations. In particular, the Gaussian defined by (7.19) has mean
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,m) and covariance Ht Σ̄t H

T
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+ Qt. Thus, we have under our linear

approximation the following expression for the measurement likelihood:
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That is,
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By replacing the mean and covariance of this expression by ẑi
t

and St, respec-

tively, we get line 21 of the EKF algorithm in Table 7.2.

The EKF localization algorithm can now easily be modified to accommo-

date outliers. The standard approach is to only accept landmarks for which

the likelihood passes a threshold test. This is generally a good idea: Gaus-

sians fall off exponentially, and a single outlier can have a huge effect on the

pose estimate. In practice, thresholding adds an important layer of robust-

ness to the algorithm without which EKF localization tends to be brittle.


