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1: Algorithm landmark_model_known_correspondence( fti, czt', Ty, m):
2: j=ct

3: F=/(mj.— )2+ (my, —y)?

4: ¢ = atan2(m;, —y,m; , — ) —0

5: q = prob(ri — #,0,) - prob(¢! — ¢,04) - prob(si — s;,0.)

6: return q

Table 6.4 Algorithm for computing the likelihood of a landmark measurement. The
algorithm requires as input an observed feature f{ = (r; ¢} si)”, and the true iden-
tity of the feature ¢}, the robot pose z: = (z y 0)”, and the map m. Its output is the
numerical probability p(f/ | ¢, m, z:).

Sampling Poses

Sometimes it is desirable to sample robot poses z; that correspond to a mea-
surement f; with feature identity ¢j. We already encountered such sampling
algorithms in the previous chapter, where we discussed robot motion mod-
els. Such sampling models are also desirable for sensor models. For example,
when localizing a robot globally, it shall become useful to generate sample
poses that incorporate a sensor measurement to generate initial guesses for
the robot pose.

While in the general case, sampling poses x; that correspond to a sensor
measurement z; is difficult, for our landmark model we can actually provide
an efficient sampling algorithm. However, such sampling is only possible
under further assumptions. In particular, we have to know the prior p(z; |
ct,m). For simplicity, let us assume this prior is uniform (it generally is not!).
Bayes rule then suggests that

play | fioch,m) = np(fl|ctze,m) play | c;,m)
= np(fi|coe,m)

Sampling from p(z; | f},c, m) can now be achieved from the “inverse” of the
sensor model p(ff | ci,x¢,m). Table 6.5 depicts an algorithm that samples
poses x;. The algorithm is tricky: Even in the noise-free case, a landmark
observation does not uniquely determine the location of the robot. Instead,
the robot may be on a circle around the landmark, whose diameter is the
range to the landmark. The indeterminacy of the robot pose also follows



