6 Robot Perception

1:	Algorithm likelihood_field_range_finder_model(z_t, x_t, m):
2:	q = 1
3:	for all k do
4:	$\text{if } z_t^k \neq z_{\max}$
5:	$x_{z_t^k} = x + x_{k,\text{sens}} \cos \theta - y_{k,\text{sens}} \sin \theta + z_t^k \cos(\theta + \theta_{k,\text{sens}})$
6:	$y_{z_t^k} = y + y_{k,\text{sens}} \cos \theta + x_{k,\text{sens}} \sin \theta + z_t^k \sin(\theta + \theta_{k,\text{sens}})$
7:	$dist = \min_{x',y'} \left\{ \sqrt{(x_{z_t^k} - x')^2 + (y_{z_t^k} - y')^2} \middle \langle x', y' \rangle \text{ occupied in } m \right\}$
8:	$q = q \cdot \left(z_{\text{hit}} \cdot \mathbf{prob}(dist, \sigma_{\text{hit}}) + \frac{z_{\text{rand}}}{z_{\text{max}}} \right)$
9:	return q

Table 6.3 Algorithm for computing the likelihood of a range finder scan using Euclidean distance to the nearest neighbor. The function **prob**(*dist*, σ_{hit}) computes the probability of the distance under a zero-centered Gaussian distribution with standard deviation σ_{hit} .

before, the function **prob**(*dist*, σ_{hit}) computes the probability of *dist* under a zero-centered Gaussian distribution with standard deviation σ_{hit} .

The search for the nearest neighbor in the map (line 7) is the most costly operation in algorithm **likelihood_field_range_finder_model**. To speed up this search, it is advantageous to pre-compute the likelihood field, so that calculating the probability of a measurement amounts to a coordinate transformation followed by a table lookup. Of course, if a discrete grid is used, the result of the lookup is only approximate, in that it might return the wrong obstacle coordinates. However, the effect on the probability $p(z_t^k | x_t, m)$ is typically small even for moderately course grids.

6.4.2 Extensions

A key advantage of the likelihood field model over the beam-based model discussed before is smoothness. Due to the smoothness of the Euclidean distance, small changes in the robot's pose x_t only have small effects on the resulting distribution $p(z_t^k | x_t, m)$. Another key advantage is that the pre-computation takes place in 2-D, instead of 3-D, increasing the compactness of the pre-computed information.