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The constant η plays no role since the resampling takes place with prob-

abilities proportional to the importance weights. By resampling particles

with probability proportional to w
[m]
t

, the resulting particles are indeed dis-

tributed according to the product of the proposal and the importance weights

w
[m]
t

:

η w
[m]
t

p(xt | xt−1, ut) p(x0:t−1 | z1:t−1 , u1:t−1 ) = bel(x0:t)(4.35)

(Notice that the constant factor η here differs from the one in (4.34).) The

algorithm in Table 4.4 follows now from the simple observation that if x
[m]
0:t

is distributed according to bel(x0:t), then the state sample x
[m]
t

is (trivially)

distributed according to bel(xt).

As we will argue below, this derivation is only correct for M ↑ ∞, due to a

laxness in our consideration of the normalization constants. However, even

for finite M it explains the intuition behind the particle filter.

4.3.4 Practical Considerations and Properties of Particle Filters

Density Extraction

The sample sets maintained by particle filters represent discrete approxima-

tions of continuous beliefs. Many applications, however, require the avail-

ability of continuous estimates, that is, estimates not only at the states repre-

sented by particles, but at any point in the state space. The problem of ex-

tracting a continuous density from such samples is called density estimation.

We will only informally illustrate some approaches to density estimation.

Figure 4.5 illustrates different ways of extracting a density from particles.

The leftmost graph shows the particles and density of the transformed Gaus-

sian from our standard example (c.f. Figure 4.3). A simple and highly effi-

cient approach to extracting a density from such particles is to compute a

Gaussian approximation, as illustrated by the dashed Gaussian in Figure 4.5(b).

In this case, the Gaussian extracted from the particles is virtually identical to

the Gaussian approximation of the true density (solid line).

Obviously, a Gaussian approximation captures only basic properties of a

density, and it is only appropriate if the density is unimodal. Multimodal

sample distributions require more complex techniques such as k-means clus-K-MEANS ALGORITHM


